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Abstract The sulfur dioxide adsorption on clinoptilolite-
rich tuff from Bigadic region of Western of Turkey and its
modified forms (Na™, KT, Ca?* and Mg?*) have been stud-
ied at 273 K and 293 K up to 100 kPa. The structural prop-
erties of clinoptilolites were studied by X-ray diffraction
(XRD) and Fourier transform infrared (FT-IR). The quanti-
tative XRD analysis demonstrated that the Natural-B sample
is mainly constituted by clinoptilolite (80-85%) with minor
contents of quartz (7-8%), feldspar (5-6%) and mica-illit
(4-5%). It was found out that the adsorption capacity and the
affinity of SO, with clinoptilolite samples depended mainly
on the type of exchanged cations and decreased as Na-B >
K-B > Mg-B > Natural-B > Ca-B for both temperature.
These results show that clinoptilolite-rich zeolites are con-
sidered potentially good adsorbents for SO, removal.

Keywords Adsorption - Clinoptilolite - Sulphur dioxide -
XRD - FT-IR

1 Introduction

One of the most dangerous pollutants resulting from fuel
combustion is known to be sulfur dioxide (SOj). SO,
emissions cause negative effect on human health including
breathing difficulties and respiratory illnesses (Balmes et
al. 1987). SO, is a source of acid rains and can be harm-
ful to the environment including damages to plants, ani-
mals and building materials (Srivastava 2003). Therefore,
control of SO, emissions is of great importance to avoid
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environmental damage. The designed technologies for con-
trolling sulfur dioxide emissions from combustion of fossil
fuels can be categorized into either dry or wet processes.
Because of their simplicity and relatively low cost, the dry
processes are generally advantageous over the wet meth-
ods. Among the dry processes, physical adsorption pro-
cesses normally operated at ambient temperature proposed
an alternative and promising way for emission control of
SO, from combustion of fossil fuels because of minimum
energy requirements for the regeneration of the adsorbent,
relatively simple design as compared with a chemical re-
actor and minimum waste disposal problems (Kopa¢ 1999;
Srivastava 2003). For the reducing SO, emissions, two types
of solid adsorbents are commonly used. CaO and MgO ob-
tained from different sources such as hydroxide, carbonate
and acetates are non-regenerative solid adsorbents, whereas
solid adsorbents such as zeolites, silica gel and charcoal are
regenerative. Ca(OH); is one of the oldest sorbents (Gupta
et al. 2004). However, the efficiency of SO, removal was
considerably less than other systems (Lee et al. 2006).
Zeolites are alumina silicate molecular sieves and are
well known for their excellent sorption properties (Breck
1974). They have extensively been used in adsorption pro-
cesses (Triebe et al. 1996; Hernandez-Huesca et al. 1999;
Dong et al. 2007; Erdogan et al. 2008; Sun et al. 2009).
Clinoptilolite is a HEU-type zeolite and characterized by
a two-dimensional pore system with three different chan-
nels having pore openings of 7.2 x 4.4 A, 4.7 x 4.1 A
and 5.5 x 4.0 A, respectively. Channels of 10-member rings
(channel A) and 8-member rings (channel B) are parallel
to each other and the c¢ axis of the unit cell, while a third
channel C of eight member rings lies along a axis, inter-
section both A and B channels (Breck 1974; Tsitsishvili
et al. 1992; Baerlocher et al. 2001). Gas molecules pene-
trate the clinoptilolite crystalline structure by a series of in-
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tersecting channels, each layer of channels separated by a
dense gas-impermeable layer of tetrahedral network (Merkle
and Slaughter 1968). The adsorption characteristics of zeo-
lites are strongly dependent upon their cation composition.
Clinoptilolite has multiple cations (e.g. Nat, Kt, Ca?T,
Mg2+) and four sites. M(1) site is located in channel A,
where Na > Ca, M(2) site is located in channel B, where
Ca > Na. M(1) and M(2) sites located at the channel inter-
sections are not coordinated in either the 8- or 10-membered
rings. M(3) site is located almost at the center of the chan-
nel C, where there is only K+ and M(4) is located in chan-
nel A, where there is only Mg”>* (Koyama and Takeuchi
1977).

Although zeolites are very good adsorbents for many
gasses, a limited number of studies were reported on the
adsorption of SO, by natural (Roux et al. 1973; Valyon et
al. 1976; Ma and Lee 1978; Ma et al. 1978; Hayhurst 1980;
Kallo et al. 1982; Axente et al. 1983; Asenov et al. 1984;
Sirkecioglu et al. 1995; Mihaila et al. 1997; Caputo et al.
2001; Demirtag 2006; Ivanova and Koumanova 2009) and
synthetic zeolites (Sharonova et al. 1991; Deng and Lin
1995; Srinivasan and Grutzeck 1999; Marcu and Sandulescu
2004). The aim of this study is to evaluate the structural be-
havior and SO, adsorption of Bigadi¢ clinoptilolite-rich ze-
olite and those of modified forms.

2 Experimental
2.1 Materials and methods

Clinoptilolite-rich mineral from the Western Turkey (Bi-
gadi¢) was used for the experimental study. Clinoptilolite
samples were crushed and sieved to obtain <63 pum frac-
tions. The investigation of the natural and cation exchanged
Bigadic clinoptilolites by using XRF, DTA, TGA, DSC and
N, adsorption techniques have already been discussed else-
where (Erdogan Alver et al. 2010).

The clinoptilolite-rich samples were washed with de-
ionized water (100 ml deionized water for 5 g of clinoptilo-
lite) at 60 °C for 2 h in order to remove the soluble impuri-
ties. These samples were activated by washing with 100 ml
of 0.2 M HCI solution followed by a washing in de-ionized
water. Then the nitrate solutions were prepared with KNO3,
NaNOs3, Mg(NO3), and Ca(NO3); for ion-exchange batch
experiments. All cationic solutions were intensely shaken
using 1 M solutions at 80 °C for 4 hours. The treated samples
were washed repeatedly with de-ionized water and dried
out in air and then at 110 °C for 16 h before the measure-
ments. Inorganic chemicals such as HCI, KNO3, NaNOs,
Mg(NO3); and Ca(NO3), were supplied by Merck (Darm-
stadt, Germany) and all solutions were prepared by using
de-ionized water.
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2.2 Instrumentation

Clinoptilolite-rich minerals from Bigadi¢ and those of mod-
ified forms were characterized with XRD and FT-IR tech-
niques. The XRD diffractograms were obtained with a
Rigaku, RINT-2200 model instrument, using CuKa radi-
ation (A = 1.54 A), 40 kV and 30 mA power supply, di-
vergence and antiscatter slits at 1°, detector slit 0.3 mm,
0.02°6 step size a counting time of 0.6 s/step. XRD patterns
were collected from 5° to 40°. Monoclinic crystal system
was used for the determination of unit-cell parameters (a,
b, c, V and B). The values of the unit cell parameters were
calculated from the characteristic diffraction reflections of
clinoptilolite. Infrared spectra of the clinoptilolite samples
were recorded in the region of (4000-400) cm™! via Perkin-
Elmer FT-IR 2000 spectrometer at a resolution of 4 cm™!
using KBr pellet technique. The adsorption isotherms of sul-
phur dioxide (SO) on natural and modified clinoptilolite-
rich minerals were determined using automated volumetric
equipment (Autosorb 1-Quantachrome Instruments, USA)
at 273 K and 293 K. The samples were degassed at 300 °C
for 7h before SO, adsorption measurements. All of the ex-
perimental runs were repeated in order to confirm desired
reproducibility of the obtained results.

3 Results and discussion
3.1 X-ray analysis

The X-Ray diffraction (XRD) patterns of clinoptilolite sam-
ples are shown in Fig. 1. Natural and cation exchanged
samples exhibit good crystallinity and give sharp peaks.
The characteristic peaks of clinoptilolite were observed at
260 =9.80°,22.36°,26° and 31.94° (Petrov 1995; Mozgawa
2000; Korkuna et al. 2006). The presence of other peaks
arises from some impurities in the clinoptilolite sample. The
quantitative XRD analysis demonstrated that the Natural-B
sample is mainly constituted by clinoptilolite (80—85%) with
minor contents of quartz (7-8%), feldspar (5-6%) and mica-
illit (4-5%). The method given by Esenli and Sirkecioglu
(2005) was used to determine the ratio of clinoptilolite. No
appreciable change has been observed either in the posi-
tion of the most intense peaks of the clinoptilolite nor in
its crystallinity with different salt solutions. In addition, the
unit-cell parameters of the natural and modified samples are
presented in Table 1. The calculated unit-cell parameters of
natural and modified forms of the samples do not show sig-
nificant changes.

3.2 Adsorption

In this work, a volumetric-type apparatus was used to mea-
sure the SO, adsorption capacities of clinoptilolites. In each
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Fig. 1 X-ray diffraction patterns of the clinoptilolite samples

Table 1 Unit-cell parameters and volumes of natural and that of mod-
ified forms of Bigadi¢ clinoptilolites

Samples a(A) b (A) c(A) B () v (A3)
Natural-B  17.7114  17.9362  7.4113 11622 2112
K-B 17.7514  17.9928  7.4341 11637 2127
Na-B 17.6630  17.9726  7.4214 11620 2113
Ca-B 17.7371 179726  7.4227 11645 2118
Mg-B 17.8291  18.0092  7.4295  116.84 2128

experimental run, the amount of adsorbent samples was
about 0.070 g. Helium was the carrier gas. Zeolites can be
improved by cation-exchange to desired gas adsorption. The
two-dimensional channel structure of clinoptilolite was al-
tered by cation exchange to investigate the effect of cation
type on the adsorption of SO,. Adsorption isotherms for sul-
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Fig. 2 Adsorption of sulphur dioxide on natural Na, K, Mg and Ca
cationic forms of Bigadig clinoptilolite at 293 K up to 100 kPa
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Fig. 3 Adsorption of sulphur dioxide on natural, Na, K, Mg and Ca
cationic forms of Bigadic clinoptilolite at 273 K up to 100 kPa

Table 2 The SO, adsorption capacities of natural and modified
clinoptilolite samples at 273 K, 293 K and 100 kPa

Sample Amount adsorbed (mmol/g zeolite)
273 (K) 293 (K)
Natural-B 2.139 2.083
Na-B 2.967 2.458
K-G 2.482 2.191
Ca-G 2.099 2.070
Mg-G 2478 2.158

fur dioxide on natural and all cation-exchanged forms of
clinoptilolite samples were obtained at 273 K and 293 K up
to 100 kPa (Figs. 2 and 3).

It is seen that the SO, adsorption isotherms for all sam-
ples showed Type 1. The adsorption temperatures of SO,
were below critical temperature. The adsorption capacities
are expressed as mmol SO, adsorbed per gram of zeolite
(Table 2). The adsorption capacity and the affinity of SO,
with clinoptilolite samples depended mainly on the type
of exchanged cations and decreased as Na-B > K-B >
Mg-B > Natural-B > Ca-B. In addition, the increasing tem-
perature caused the adsorbed amount to decrease. It was
found that the adsorption capacity of SO, depended on
the cation electronegativity and ionic potential. This is in
agreement with previous papers (Sirkecioglu et al. 1995;
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Ivanova and Koumanova 2009). A similar order for SO,
adsorption was determined for cationic forms of Turkey
clinoptilolite: H" > Nat > K > Ca?*t (Sirkecioglu et
al. 1995). Ivanova and Koumanova (2009) found that the
adsorption capacity of the Na-form of natural clinoptilo-
lite from Bulgaria was the highest. Capacity of clinoptilo-
lites for SO, ranged from 2.083 mmol/g to 2.967 mmol/g in
this study (Table 2). Considering the adsorption capacity, Na
form exhibited the greatest affinity for SO, removal among
the cation exchanged-clinoptilolite samples (Table 2). As
shown in Figs. 2 and 3 the isotherms of SO, were strongly
favorable for the Na-B. Ionic exchange with sodium nitrate
produced an important increase of the SO, adsorption ca-
pacity. SO, adsorption amounts of Ca-B, Mg-B, K-B and
Na-B samples at 293 K and 100 kPa were 2.070, 2.158,
2.191 and 2.458 mmol/g, respectively (Table 2). At 273 K
and 100 kPa, the SO, adsorption capacity of Na-B sample is
found to be 2.967 mmol/g. From 293 K to 273 K at 100 kPa,
SO, adsorption amount is increased from 2.191 mmol/g to
2.482 mmol/g for KB. Ca-form for both temperatures has
been observed to have the lowest adsorption capacities for
SO; gas, resulting from the channel blockage caused by the
cation locations in the sample (Sirkecioglu et al. 1995). It
has a value of 2.099 mmol/g at 273 K and 100 kPa (Table 2).

The adsorption properties of the zeolites depend on the
size and shape of the adsorbate molecules as well as on the
size and locations of the cations. Therefore, the type, num-
ber, charge density and distribution of the charge-balancing
cations in the A, B and C channels of clinoptilolite are
particularly influential in adsorption (Munson 1973; Breck
1977; Ackley et al. 1992). Considering the each unit cell of
clinoptilolite, M(1)-M(3) sites and M(1)-M(4) sites are for-
bidden pairs of atomic locations. Therefore, these locations
cannot be simultaneously occupied (Koyama and Takeuchi
1977). Na and Ca occupies both M(1) and M(2) sites. If
Ca?" is situated at the intersections of channels, it creates
the blockage of all three channels. Mg?* can completely
block channel C but has slight effect upon intersecting chan-
nels. Therefore, SO, molecule cannot penetrate at an appre-
ciable rate and diffuses more slowly. Most zeolites are polar
adsorbents due to the presence of the exchangeable cations
(Koyama and Takeuchi 1977; Ruthven 1988). In addition,
the polarity of adsorbed molecules plays a crucial role in ad-
sorption properties of the zeolites. SO, molecule has a high
permanent dipole moment (1.63 Debye) (Weast et al. 1985)
and higher adsorption capacities and a larger increase in the
amount adsorbed at higher pressures were observed result-
ing in stronger ion-dipole and dipole-dipole interactions for
this molecule (Sirkecioglu et al. 1995).

Clinoptilolite’s unique pore structure preferentially ad-
sorbs SO, molecule (3.6 A) that are smaller than pore di-
mension (about 4 A) of clinoptilolite. Higher SO adsorp-
tion for Na-B is due to larger interaction between SO, with
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a large dipole moment with electric field energy created
by Na™ cation in the zeolite structure. Electronegativity
value of potassium is lower than that of sodium. In addition,
potassium has greater atomic diameter compared to sodium.
Hence, interaction energy between K-B and SO, should be
lower than that with the Na-B. K* occupies M(3) site and
the outer edge of A channel, causing a lowering of the ad-
sorption capacity.

Clearly, modifications and the resulting induced struc-
tural changes greatly affected the gas adsorption capac-
ity of natural zeolites. Experimental results showed that
clinoptilolite-rich zeolite could be considered potentially
good candidate due to its low cost, abundance and reusabil-
ity for SO, removal.

3.3 FT-IR analysis

Infrared spectroscopy has been widely used for studying the
structural properties of zeolites. FT-IR spectra of natural and
Na-, K-, Mg- and Ca-exchanged clinoptilolite samples were
presented in Figs. 4 and 5. All of the samples showed the
same structural properties and following bands were ob-
served. The strongest band around 1055 cm™! due to the
external tetrahedra linkage asymmetric stretching (Daulo et
al. 2002; Castaldi et al. 2005; Ruiz-Serrano et al. 2010).
The second strongest band at 465 cm™! arises from in-
ternal tetrahedra bending (Rodriguez-Fuentes et al. 1998;
Perraki and Orfanoudaki 2004; Ruiz-Serrano et al. 2010).
The bands ca. 1208 cm™!, 795 cm™! and 720 cm~! are
attributed to internal tetrahedra asymmetric stretching, ex-
ternal tetrahedra symmetric stretching and internal tetrahe-
dra symmetric stretching, respectively (Rodriguez-Fuentes
et al. 1998; Ruiz-Serrano et al. 2010). In addition, the
bands ca. 670 cm~! and 609 cm™! in the spectra are re-
lated to the symmetric tetrahedra stretching and double
ring vibrations, respectively (Rodriguez-Fuentes et al. 1998;
Ruiz-Serrano et al. 2010). There are three typical bands due
to the presence of zeolite water. An isolated band peaked
at 1645 cm™! is due to bending vibrations of sorbed wa-
ter. In addition, a broad band at 3450 cm~! is associated
with hydrogen bonded OH and the band at 3630 cm™! is at-
tributed to the isolated OH (Perraki and Orfanoudaki 2004,
Korkuna et al. 2006; Elaiopoulos et al. 2008). The change
of the cations does not result in the distinct shift of these
band positions (Castaldi et al. 2005). As shown in Figs. 4
and 5, FT-IR spectra of natural and cation exchanged forms
of clinoptilolite samples after adsorption of sulphur diox-
ide at 273 K and 293 K were also presented. In all FT-IR
spectra, sulphur dioxide was adsorbed on natural and mod-
ified clinoptilolites as one species characterized by an S—O
stretching band at ca. 1340 cm™!.
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Fig. 4 FT-IR spectra of natural,
Na- and K-forms of Bigadi¢
clinoptilolite
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Fig.5 FT-IR spectra of Mg-
and Ca-forms of Bigadi¢
clinoptilolite &
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4 Conclusions

The SO, adsorption properties of natural and modified
clinoptilolite samples were experimentally investigated by
comparing the initial crystalline structure and SO, adsorp-
tion ability of the natural clinoptilolite samples to that of the
samples after treatments with salt solutions. Among all the
modified forms, it was found that the Na- forms of clinop-
tilolite sample has the most SO, adsorption capacity. It was
found that SO, adsorption amounts of Na-B at 273 K, 293 K
and 100 kPa were 2.967 mmol/g and 2.458 mmol/g, respec-
tively. Uptake rates for SO, also varied considerably due
to the effect of the different cations upon channel block-
age. Ca-forms exhibited the lowest adsorption capacity at
both temperatures and 100 kPa. Adsorption capacities of
SO, were found to decrease considerably with increasing
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temperature. As expected according to electronegativity and
ionization potential of the cations and their positions in
clinoptilolite, it was observed that uptake of sulphur dioxide
on Bigadi¢ zeolite at 273 K, 293 K and 100 kPa increases
in the following sequence Ca-B < Natural-B < Mg-B <
K-B < Na-B.
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